C.U.SHAH UNIVERSITY Summer Examination-2022

Subject Name: Complex Analysis

Subje	ect Code: 4SC05COA1	Branch: B.Sc. (Mathemati	ics)
Seme	ster: 5 Date: 22/04/2022	Time: 11:00 To 02:00	Marks: 70
Instru (1 (2 (3 (4	 uctions: Use of Programmable calculator & any oth Instructions written on main answer book a Draw neat diagrams and figures (if necessa) Assume suitable data if needed. 	er electronic instrument is pr are strictly to be obeyed. ry) at right places.	ohibited.
Q-1	Attempt the following questions:		(14)
a)	Evaluate: $\int_c \frac{1}{z} dz$; C: $ z = 1$.		(02)
b) c)	Is the function $f(z) = z^2$ is analytic? Define: Entire function		(01) (01)
d)	A function $u(x, y)$ is said to be harmonic if a (a) $u_{m} + u_{m} = 0$ (b) $u_{m} - u_{m} = 0$	and only if (c) $u_{m} + u_{m} = 0$ (d) No	(01)
e)	(a) $u_{xx} + u_{yy}$ (b) $u_{xx} + u_{yy}$ (c) $u_{xx} + u_{yy}$ A function $f(z)$ is analytic if(a) Real part of $f(z)$ is analytic(b) images (b) images (c) both (a) and (b)(d) Note	iginary part of $f(z)$ is analytine of these	(01)
f)	If $f(z) = z - \overline{z}$ then $f(z)$ is (a) Purely real (b) Purely imaginary	(c) Zero (d) None	(02)
g)	Which are the fixed points of $w = \frac{2z-3}{z+2}$?		(02)
h) i)	Define: Harmonic function. State C-R equation in polar co-ordinates.		(02) (02)
Attemp	ot any four questions from Q-2 to Q-8		
Q-2	Attempt all questions $(r^{3}(1+i)-r^{3}(1-i))$		(14)
a)	Show that $f(z) = \begin{cases} \frac{x + (1+z) - y + (1-z)}{x^2 + y^2} ; z \neq 0 \\ 0 & z = 0 \end{cases}$ is	continuous at origin.	(05)
b)	Suppose $f(z) = u + iv, z_0 = x_0 + iy_0$ and u if and only $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 f$ and	$v_0 = u + iv \text{ then } \lim_{z \to z_0} f(z)$ d $\lim_{(x,y) \to (x_0,y_0)} v(x,y) = v$	$(05) = w_0$ (05) w_0 .
c)	Prove that $f(z) = \overline{z}$ is no-where differential	ple.	(04)

Q-3 a)	Attempt all questions Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic. Find harmonic conjugate of $u(x, y)$. Also find analytic function.	(14) (05)
b)	Evaluate $\int_C z^2 dz$ where <i>C</i> is the path joining the points $z = 1 + i$ to $z = 2(1 + 2i)$ along the straight line joining $1 + i$ to $2(1 + 2i)$.	(05)
c)	Evaluate: $\int_{c} \frac{e^{z}}{(z-3)(z-1)} dz$, where <i>c</i> is circle $ z = 4$.	(04)
0-4	Attempt all questions	(14)
a)	State and prove C-R equation in cartesian coordinates.	(07)
b)	Evaluate: $\int_C \frac{dz}{z^2+9}$ where $C: z = 5$.	(05)
c)	Find invariant points for $f(z) = \frac{3z-5}{z+1}$.	(02)
0-5	Attempt all questions	(14)
a)	Determine the analytic function whose real part is $e^{2x}(x \cos 2y - y \sin 2y)$.	(05)
b)	Find image of $ z - 3i = 3$ under the mapping $w = \frac{1}{z}$.	(05)
c)	Transform the curve $x^2 - y^2 = 4$ under the mapping $w = z^2$.	(04)
Q-6	Attempt all questions	(14)
Q-6 a)	Attempt all questions State and prove Cauchy's integral formula.	(14) (07)
Q-6 a) b)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality.	 (14) (07) (05) (02)
Q-6 a) b) c)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem.	 (14) (07) (05) (02)
Q-6 a) b) c) Q-7	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions	 (14) (07) (05) (02) (14)
Q-6 a) b) c) Q-7 a)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions Evaluate: $\int_{C} \frac{z^3+z^2+z+1}{z(z-1)^2} dz, C: z \le 2.$	 (14) (07) (05) (02) (14) (06)
Q-6 a) b) c) Q-7 a) b)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions Evaluate: $\int_C \frac{z^3+z^2+z+1}{z(z-1)^2} dz$, $C: z \le 2$. State and prove Cauchy's theorem.	 (14) (07) (05) (02) (14) (06) (05)
Q-6 a) b) c) Q-7 a) b) c)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions Evaluate: $\int_C \frac{z^3+z^2+z+1}{z(z-1)^2} dz$, $C: z \le 2$. State and prove Cauchy's theorem. Find arc length for the curve $c: z(t) = 1 - 3it, t \in [-1,1]$.	 (14) (07) (05) (02) (14) (06) (05) (03)
Q-6 a) b) c) Q-7 a) b) c) O-8	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions Evaluate: $\int_C \frac{z^3+z^2+z+1}{z(z-1)^2} dz$, $C: z \le 2$. State and prove Cauchy's theorem. Find arc length for the curve $c: z(t) = 1 - 3it, t \in [-1,1]$. Attempt all questions	 (14) (07) (05) (02) (14) (06) (05) (03) (14)
Q-6 a) b) c) Q-7 a) b) c) Q-8 a)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions Evaluate: $\int_C \frac{z^3+z^2+z+1}{z(z-1)^2} dz$, $C: z \le 2$. State and prove Cauchy's theorem. Find arc length for the curve $c: z(t) = 1 - 3it$, $t \in [-1,1]$. Attempt all questions Find the Mobius transformation that maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$	 (14) (07) (05) (02) (14) (06) (05) (03) (14) (07)
Q-6 a) b) c) Q-7 a) b) c) Q-8 a)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions Evaluate: $\int_C \frac{z^3+z^2+z+1}{z(z-1)^2} dz$, $C: z \le 2$. State and prove Cauchy's theorem. Find arc length for the curve $c: z(t) = 1 - 3it$, $t \in [-1,1]$. Attempt all questions Find the Mobius transformation that maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ onto $w_1 = -1$, $w_2 = -i$, $w_3 = 1$ respectively.	 (14) (07) (05) (02) (14) (06) (05) (03) (14) (07)
Q-6 a) b) c) Q-7 a) b) c) Q-8 a) b)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions Evaluate: $\int_C \frac{z^3+z^2+z+1}{z(z-1)^2} dz$, $C: z \le 2$. State and prove Cauchy's theorem. Find arc length for the curve $c: z(t) = 1 - 3it$, $t \in [-1,1]$. Attempt all questions Find the Mobius transformation that maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ onto $w_1 = -1$, $w_2 = -i$, $w_3 = 1$ respectively. Prove that $\left \int_c \frac{1}{z^{2}+1} dz\right \le \frac{2\pi}{3}$, where <i>c</i> is the arc of the circle $ z = 2$ that lies in	 (14) (07) (05) (02) (14) (06) (05) (03) (14) (07) (05)
Q-6 a) b) c) Q-7 a) b) c) Q-8 a) b)	Attempt all questions State and prove Cauchy's integral formula. State and prove ML- inequality. State Liouville's theorem. Attempt all questions Evaluate: $\int_C \frac{z^{3+z^2+z+1}}{z(z-1)^2} dz$, $C: z \le 2$. State and prove Cauchy's theorem. Find arc length for the curve $c: z(t) = 1 - 3it$, $t \in [-1,1]$. Attempt all questions Find the Mobius transformation that maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ onto $w_1 = -1$, $w_2 = -i$, $w_3 = 1$ respectively. Prove that $\left \int_c \frac{1}{z^2+1} dz\right \le \frac{2\pi}{3}$, where c is the arc of the circle $ z = 2$ that lies in first quadrant.	 (14) (07) (05) (02) (14) (06) (05) (03) (14) (07) (05)

Page **2** of **2**

